Group decision making method based on single valued neutrosophic Choquet integral operator∗

نویسندگان

  • HAN Lili
  • WEI Cuiping
چکیده

Single valued neutrosophic set (SVNS) depicts not only the incomplete information, but also the indeterminate information and inconsistent information which exist commonly in belief systems. The existing decision making methods for SVNS consider the case that the attributes are independent, and cannot handle the correlation among attributes. Based on the Choquet integral and the cosine similarity degree of single valued neutrosophic number, we propose an operator to aggregate single valued neutrosophic numbers (SVNNs), which can deal with the single valued neutrosophic information with connective attributes. By using the proposed single valued neutrosophic Choquet integral operator, an approach is given for the multi-attribute group decision making problems with SVNNs. An example is showed to illustrate the validity and applicability of the proposed method. Keywords multi-attribute group decision making, single valued neutrosophic sets, Choquet integral, aggregation operators Chinese Library Classification C934 2010 Mathematics Subject Classification 90B50 ÂvFÏ: 2017-03-28 * Ä7‘8: I[g,‰ÆÄ7 (No. 71371107) 1. ­H“‰ŒÆ+nÆ , ìÀFì 276800, College of Operations and Management, Qufu Normal University, Rizhao 276800, Shandong, China 2. 2ŒÆêƉÆÆ , ô€ 2 225002, College of Mathematical Science, Yangzhou University, Yangzhou 225002, Jiangsu, China † Ï&Šö E-mail: [email protected] 2Ï ÄuüŠ¥œ8ChoquetÈ©Žf +ûü{ 111 0 Ú ó gZadehJÑ 8Vg±5, 8nØ 2ïÄ. Atanassov3DÚ 8 Ä:þÏLO\šäáÝ1⁄4êJÑ †ú 8nØ. †ú 8UN ́L ˆ &E, gJѱ5 ׄuÐÚ2A^. †ú 8U?nØ & E%ØU?nØ(1⁄25Úؘ—&E. ~X, 3˜ N ̄ò õ‘ÀJ¥, kÀ‘: (!†Ø!Ø(1⁄2. duûüö‡< @Uåk, ûüöŒU3 (ÚØ(1⁄2ü‡À ‘¥gþ, ŒU¬ÓžÀJüö, aÑy ÚO(J: ( 'Ǐ 0.5, †Ø 'Ç  0.4,Ø(1⁄2 'Ǐ 0.3. w,†ú 8Ã{Lˆda&E.u ́Smarandache3† ú 8 Ä:þJÑ ¥œ8nØ. ¥œ8nØ3†ú 8Ä:þO\ Õá Ø (1⁄2Ý, ́ 8چú 8 ˜«í2. æ^¥œ8nØ, þã~f¥ ûü&EŒ ±£ãx(0.5, 0.3, 0.4). 3¥œ8nØ¥ûüöŒ±¦^ý¢§Ý!”ýÝÚØ(1⁄2§Ý5£ãé* ̄Ô μd, gJѱ5Úå 2 '5ÚïÄ. @Ï ¥œ8 ́lóÆ ÝJÑ , JuA^u¢Sûü¥. WangÚ Smarandache Äu¥œ8nØlEâ ÝJÑ ˜«üŠ¥œ8Vg, ¿?Ø Ùƒ'$Ž5KÚ5Ÿ. LiuÚTangJÑ Äu«m ¥œ8 \ 8(ŽfÚûü{. YeJÑ ÄuüŠ¥œ8 ڃqÝ û ü{, Wang JÑ ÄuüŠ¥œ8 MSMŽfÚTODIM õá5ûü{. ®k'uüŠ¥œ8ûü{ ïÄ̇Äá5ƒmƒpÕá ûü ̄K, 3 y¢ûü¥,á5ƒm~~3ˆ«'é'X,I‡Äμd&EüŠ¥œ8…á5m k'é'X õá5ûü ̄K.uChoquetÈ©ŽfŒ±Ä&Em ƒp'X, ©òÙí2 üŠ¥œ8œ/, |^üŠ¥œ8 {uƒqÝ' {, JÑ üŠ ¥œ8ChoquetÈ©Žf. TŽfØ=Ä á5m ­‡5,ӞŒ±‡Ná5m 'é'X,, éTŽf 5ŸÚAϜ/?1 ?Ø,¿3dŽfÄ:þJÑ ¦)õ á5+ûü ̄K Ž{. 1 üŠ¥œ89Ù$ŽÚ5Ÿ 1⁄2 1.1 X˜é–8, A = {x(TA(x), IA(x), FA(x))|x ∈ X}, K¡üŠ¥œ 8. TA(x), IA(x), FA(x)©OL«áu ý¢§Ý, Ø(1⁄2§Ýڔý§Ý, ÷v ∀x ∈ X, TA(x), IA(x), FA(x) ∈ [0, 1], 0 6 TA(x) + IA(x) +FA(x) 6 3.¡ (T (x), I(x), F (x))üŠ¥ œê, ¿òÙ{Px = (Tx, Ix, Fx). 1⁄2 1.2 é?¿¥œêxi = (Ti, Ii, Fi), xj = (Tj , Ij , Fj), ك'$Ž1⁄2ÂXe: (1) xi ⊕ xj = (Ti + Tj − TiTj , IiIj , FiFj); (2) xi ⊗ xj = (TiTj , Ii + Ij − IiIj , Fi + Fj − FiFj); (3) λxi = ( 1− (1− Ti), (Ii), (Fi) ) , λ > 0; (4) (xi) λ = ( (Ti) , 1− (1− Ii), 1− (1− Fi) ) , λ > 0; (5) xi Ö8xi = (1− Ti, 1− Ii, 1− Fi). þã$Ž5KäkXe5Ÿ: (1) xi ⊕ xj = xj ⊕ xi; (2) xi ⊗ xj = xj ⊗ xi;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some single valued neutrosophic correlated aggregation operators and their applications to material selection

In engineering design, the decision to select an optimal material has become a challenging task for the designers, and the evaluation of alternative materials may be based on some multiple attribute group decision making (MAGDM) methods. Moreover, the attributes are often inter-dependent or correlated in the real decision making process. In this paper, with respect to the material selection pro...

متن کامل

Generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral operators for multicriteria decision making

The interval-valued intuitionistic fuzzy set (IVIFS) which is an extension of the Atanassov’s intuitionistic fuzzy set is a powerful tool for modeling real life decision making problems. In this paper, we propose the emph{generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral} (GIVIFHGSCI) and the emph{interval-valued intuitionistic fuzzy Hamacher general...

متن کامل

Multigranulation single valued neutrosophic covering-based rough sets and their applications to multi-criteria group decision making

In this paper, three types of (philosophical, optimistic and pessimistic) multigranulation single valued neutrosophic (SVN) covering-based rough set models are presented, and these three models are applied to the problem of multi-criteria group decision making (MCGDM).Firstly, a type of SVN covering-based rough set model is proposed.Based on this rough set model, three types of mult...

متن کامل

Some Generalized Single Valued Neutrosophic Linguistic Operators and Their Application to Multiple Attribute Group Decision Making

This paper proposes a group decision making method based on entropy of neutrosophic linguistic sets and generalized single valued neutrosophic linguistic operators. This method is applied to solve the multiple attribute group decision making problems under single valued neutrosophic liguistic environment, in which the attribute weights are completely unknown. First, the attribute weights are ob...

متن کامل

Interval neutrosophic numbers Choquet integral operator for multi-criteria decision making

In this paper, the Choquet integral and the interval neutrosophic set theory are combined to make multi-criteria decision for problems under neutrosophic fuzzy environment. Firstly, a ranking index is proposed according to its geometrical structure, and an approach for comparing two interval neutrosophic numbers is given. Then, a ≤L implied operation-invariant total order which satisfies order-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017